CAGE

Linda Harrell (STel),
Badri Younes (NASA CLASS Project Manager)

Outline

- **■** Introduction
- **■** Application to Ka-Band Systems
- **■** Modeling Capabilities
- **Sample Analyses**
- **Sample Output**
- An Example
- **PC Requirements**
- **■** Comparison with Other Simulation Tools

Introduction

- Used to design, analyze, and visualize any satellite or terrestrial communications system
- **■** Assesses communications performance in presence of
 - interference
 - atmospherics
 - multipath
 - blockage
- **■** Extremely versatile
 - Users define their own variables and equations
 - No need to develop or modify existing code
- **Performs dynamic or static simulations**

Overview

Design

Define communication systems using a graphical block diagram editor

Analyze

- Geometric coverage
- Interference statistics
- Communications performance

■ Visualize

- Results displayed graphically on the screen during the simulation
- Results also stored in files

Application to Ka-band Systems

- Ideally suited for assessing performance of Ka-band systems
 - Models all different types of systems in this band
 - » Fixed Service (FS) Networks
 - » Fixed Satellite Service (FSS)Networks
 - » Mobile Satellite Service (MSS)Systems
 - » Satellite Systems that utilize Inter-Satellite links (ISLs)
 - Assesses effects of interference and rain attenuation

CAGE Modeling Capabilities

- Graphical Block Diagram Editing
 - Menu driven
 - Easy to configure hierarchical systems
 - Use built-in library blocks, functions, and outputs
- **Custom Variables and Equations**
 - Makes CAGE extremely versatile and powerful
 - Users can define almost any communications or "what if" scenario using standard functions
- **Block Arrays**
 - Allows users to easily define multiple elements within a network (i.e. a network of LEO satellites or FS stations)

CAGE Modeling Capabilities

■ Finite State Machines

- Defines communication parameters differently for different situations within a simulation
- Ideal for defining scheduling of communications services, antenna switching, or flight dynamics
- **Time Based Schedules**
 - Schedules can be read in from an input file
- Antenna Patterns
 - Specify antenna patterns with input files
 - Select standard analytic antenna types

CAGE Modeling Capabilities

■ Vehicle Dynamics

- trajectory and orbit blocks define spacecraft, aircraft, or ground vehicular motion
- Can also read dynamics from a data file

■ Interference

 Models solar interference, multipath, RFI, self-interference, and any other interference sources

Propagation

 Models atmospheric atttenuation, rain attenuation, multipath, blockage, horizon masks, and space loss

Communications Links

CAGE calculates received carrier power, interference power,
 C/N ratio, Eb/N0, BER, G/T or any other system parameter

Sample Analyses

- **■** Geometric Coverage
 - CAGE can calculate look angles, view periods, antenna coverage, or solar offpointing angles
 - » even when a spacecraft is being launched, switching its antennas, tumbling, or reacting to an emergency

Sample Analyses

- **■** Interference Statistics
 - Calculates the magnitude of interference, location of interference, interference timelines, and interference statistics due to the emissions of all interference sources

- **■** Communications Performance
 - Calculates the signal degradation from propagation effects, vehicle dynamics, antenna offpointing, and other parameters
 - Calculates the BER or signal margin as a function of ground location, time, or spacecraft orientation

CAGE Standard Outputs

- **■** Timelines
- Histograms
- **Probability Density Functions (PDFs)**
- **Cumulative Density Functions (CDFs)**
- Contour Plots
- **Dynamic 3-D displays**

Interactive simulations

■ Users can interactively point a spacecraft antenna, open cargo bay doors, rotate a solar panel, or tumble the spacecraft and immediately see the effects on the screen

Display of Simulation Results

Example

■ Assess interference statistics at Tracking Data Relay Satellite System (TDRSS) user spacecraft from Iridium ISL emissions

PC System Requirements

- **IBM compatible PC with Windows 95 or Windows NT**
- Minimum: 486 processor with a 25 MHz clock speed
- Recommended: Pentium with 90 MHz clock speed

Comparison with Other Simulation Tools

Simul- ation Tool	De s cri pti on	Block Diagram Editing	Simul- ation Tool	View Results Graphic- ally	Supports Static Simul- ations	Supports Dynamic Simul- ations	Supports 3-D Graphics	Can Calculate Interference Statistics and BER	Can Cal cu late Mu lti pat h	Supports Interactive Simul- ations
CAGE	Dynamic simulation tool for modeling all aspects of space and terrestrial systems	\checkmark	$\sqrt{}$	V	\checkmark	V	V	\	V	V
SPW	Primarily a static simulation tool for modeling hardware and signal processing systems	~	~	7	~	•	•	\checkmark	V	•
STK	grap hic al tool for an alyzing and vi sual izing sate lite systems	-	V	V	V	V	V	-	-	-

CAGE is the most powerful and versatile simulation tool available for assessing communication systems performance in a dynamic environment

